The Non Equilibrium Thermodynamics for glassy polymers (NET-GP) approach

Seminar held by Dr. Maria Grazia De Angelis at GKSS Research Center, Institute of Polymer Research, Teltow, Germany June 2005

Gas sorption in glassy polymers: a challenging problem

➤ The gas solubility in rubbery or melt polymers can be predicted based on activity-coefficient or EOS approaches, through the general thermodynamic relations for phase equilibrium and well established expressions for fluid state equilibrium free energy as function of temperature, pressure and composition.

> Problems rising when dealing with glassy polymers:

temperature, composition and deformation histories affect the thermodynamic properties of the system

pseudo-equilibrium conditions rather than true thermodynamic equilibrium are reached by the system

Lack of reliable expressions for free energy as function of non-equilibrium state variables

Gas sorption in glassy polymers: dual mode empirical model

$$C = k_D p + \frac{C'_H b p}{1 + b p}$$

✓ Easy to use, explicit with respect to the concentration

✓ It depicts a rough but sound picture of gas sorption in glassy matrices

 ✓ It correctly describes the relatively high negative sorption enthalpy observed in glassy polymers, C'_H can be qualitatively related to physical variables describing out of equilibrium degree ✓ Empirical in nature, its parameters need to be evaluated for each gaspolymer couple and temperature and are pressuredependent.

 ✓ In some cases it is not qualitatively able to describe the sorption isotherm (ex. Alcohols-PTMSP: sigmoidal sorption).

Gas sorption in glassy polymers: predictive models with order parameters

✓ The glassy mixture is a non equilibrium phase, whose properties are derived from a Gibbs free energy expression obtained via statistical thermodynamics.

✓ A suitable order parameter, history dependent, is introduced to define the out of equilibrium degree of the system.

Fractional free volume f_0 at T_G of the mixture; value frozen for all $T < T_G$: this model is unable to represent hysteresis, swellingenhanced sorption (because f_0 is constant).

Actual fractional number of holes in the mixture per polymer mass, ξ : does not collapse to an equilibrium expression for the pure polymer; dilation data are always needed for the calculation, even in the low pressure limit.

NET-GP: assumptions and results

The glassy polymeric phase is *i*) homogeneous *ii*) isotropic *iii*)amorphous *The volume relaxation of the polymer follows a Voigt Model The glassy phase reaches an asymptotic pseudo equilibrium condition*

The polymer density (ρ_2) is an internal state variable for the glassy mixture

➤The non equilibrium properties can be related to the equilibrium properties of the mixture: A under pseudo-equilibrium conditions is uniquely related to the equilibrium value of A at the same T, V and composition

Correspondingly, the **penetrant chemical potential** can be calculated in the **non** equilibrium glassy mixture.

➢ Phase equilibrium condition requires that the chemical potential of the penetrant in the external gaseous phase equals the corresponding pseudo equilibrium value in the solid phase. This constraint allows to calculate the pseudo equilibrium solubility of the penetrant in the glassy mixture.

Choice of ρ_2 as order parameter ⁽¹⁾

The polymer density ρ_2 labels the excess free volume of the system with respect to the equilibrium value, and depends on the history of the sample: it is equivalent to other order parameters (f_0 , ξ).

During sorption, ρ_2 is simply related to the polymer volume V (the polymer does not dissolve in the gas $\Rightarrow m_2$ is constant), which is a macroscopic, directly measurable quantity: $\rho_2 = m_2/V$

When the volume dilation is negligible, i.e.:
 In the low pressure range, for any penetrant
 In a wide pressure range, for non swelling penetrants

the density is equal to that of the dry polymer: For $p \rightarrow 0$ or for non swelling penetrants : $\rho_2 \approx \rho_2^0$ (In the other cases, dilation data during sorption are needed to calculate ρ_2)

⁽¹⁾: unless otherwise specified, we will always consider a system formed by a gas (labeled by index 1) and a polymer (labeled by index 2)

Model for volume relaxation during sorption

During sorption, the situation is similar to the one experienced after a sudden Δp , without sorption. The volume decreases instantaneously due to variation in the total pressure, then starts to increase (viscous part) due to gas sorption inside the matrix, until the viscous response becomes infinitely slow ($V_V \approx V_{V,\infty}$).

We assume that **the prevailing effect is that of swelling**, in view of the high modulus of the glass and relatively low pressure jumps imposed during sorption

A

 $\Delta p_i > 0$

B

gas-polymer

$$V_E \approx \text{const} \Rightarrow \frac{dV}{dt} \approx \frac{dV_V}{dt}$$
$$\frac{dV_V}{dt} = F(T, p, V_V, \omega_i)$$

ρ_2 internal state variable for glassy mixtures

$$\frac{\mathrm{d}V}{\mathrm{d}t} \approx \frac{\mathrm{d}V_V}{\mathrm{d}t} \equiv H(T, p, \omega_1, V_V) = H(T, p, \omega_1, V - V_E) = F(T, p, \omega_1, V).$$

$$\frac{d\rho_2}{dt} = f\left(T, p, \omega_1, \rho_2\right)$$

<u>By definition</u>, ρ_2 is an internal state variable for the gas-polymer system during sorption

 I^{st} , 2^{nd} law for a generic binary <u>closed</u> system defined by (T, p, ρ_2, n_1, n_2)

$$\left[\left(\frac{\partial G}{\partial T} \right) + S \right] \cdot \frac{dT}{dt} + \left[\left(\frac{\partial G}{\partial p} \right) - V \right] \cdot \frac{dp}{dt} + \mu_1 \cdot \frac{dn_1}{dt} + \alpha \cdot \frac{d\rho_2}{dt} \le 0 \right] \qquad \frac{dn_1}{dt} = 0 \quad (mass \ balance)$$

$$\forall \frac{dT}{dt}, \frac{dp}{dt} \text{ Arbitrarily chosen } \Rightarrow \left(\frac{\partial G}{\partial T}\right)_{p,\rho_2,n_1,n_2} = -S \quad \left(\frac{\partial G}{\partial p}\right)_{T,\rho_2,n_1,n_2} = V$$

$$\frac{d\rho_2}{dt} \text{ cannot be arbitrarily varied:} \Rightarrow \alpha \cdot \frac{d\rho_2}{dt} \leq 0 \quad \left(\alpha = \left(\frac{\partial G}{\partial \rho_2}\right)_{T,p,n_i}\right)$$
8

ρ_2 internal state variable for glassy mixtures

Extension to the non equilibrium domain: Helmholtz free energy

$$\begin{bmatrix} \left(\frac{\partial A}{\partial T}\right) + S \end{bmatrix} \cdot \frac{dT}{dt} + \left(\frac{\partial A}{\partial p}\right) \cdot \frac{dp}{dt} + \left(\frac{\partial A}{\partial n_{l}}\right) \cdot \frac{dn_{l}}{dt} + \begin{bmatrix} \left(\frac{\partial A}{\partial V}\right) + p \end{bmatrix} \cdot \frac{dV}{dt} \le 0$$

$$\begin{bmatrix} \left(\frac{\partial A}{\partial T}\right)_{p,V,n_{1},n_{2}} = -S \\ \left(\frac{\partial A}{\partial p}\right)_{T,V,n_{1},n_{2}} = 0 \\ (2nd law) \end{bmatrix} \land A_{ne} = A_{ne} \left(T,V,n_{1},n_{2}\right)$$

$$\begin{bmatrix} A_{ne} \text{ is not affected by pressure.} \\ A_{eq} \left(T,\omega_{1},\rho_{2}\right) = \hat{A}_{ne} \left(T,p,\omega_{1},\rho_{2}\right) \\ \hat{G}_{ne} = \hat{A}_{Eq} \left(T,\omega_{1},\rho_{2}\right) + p\hat{V} \text{ with } p \neq p_{eq} \end{bmatrix}$$

At equilibrium:
$$\frac{dV}{dt} = 0$$
 $\left(\frac{\partial A}{\partial V}\right) = -p_{eq}$ **E.O.S.** 10

Extension to the non equilibrium domain: Chemical potential

$$\hat{G}_{ne} = \hat{A}_{Eq} \left(T, \omega_1, \rho_2 \right) + p \hat{V} \quad \swarrow \quad \mu_1^{(GP)} = \left(\frac{\partial m \hat{G}}{\partial m_1} \right)_{T, p, m_2, \rho_2} \equiv \left(\frac{\partial \rho \hat{A}_{Eq}}{\partial \rho_1} \right)_{T, \rho_2}$$

Non-equilibrium free energy functions can thus be obtained starting from the equations of state associated to the lattice fluid theories, as well as to the tangent hard sphere chain theories

$$\mu_{ne}\left(T, p, \omega_{1}, \rho_{2}\right) = \mu_{eq}\left(T, \omega_{1}, \rho_{2}\right)$$

The chemical potential expression for glassy phase is different from the usual equilibrium expression: it must be calculated at the known non-equilibrium value of the polymer density ρ_2

Pseudo equilibrium solubility calculation

1st and 2nd law for an open system:

$$\left[\left(\frac{\partial G}{\partial T} \right) + S \right] \cdot \frac{dT}{dt} + \left[\left(\frac{\partial G}{\partial p} \right) - V \right] \cdot \frac{dp}{dt} + \left(\mu_l - \mu_l^{ext} \right) \cdot \frac{dn_l}{dt} + \alpha \cdot \frac{d\rho_2}{dt} \le 0$$

$$\left(\mu_{l}-\mu_{l}^{ext}\right)\cdot\frac{dn_{l}}{dt}+\alpha\cdot\frac{d\rho_{2}}{dt}\leq0$$

At pseudo equilibrium:

$$\frac{dn_1}{dt} = 0$$

 dn_1

dt

Can be arbitrarily varied

(mobility of the penetrant is not kinetically hindered as the matrix)

Pseudo equilibrium condition:

$$\mu_{1,ne}(T, p, \omega_1, \rho_2) = \mu_1^{ext}(T, p)$$

Where $\rho_{2\neq}\rho_{2,eq}$

Solubility calculation

Equilibrium :

Pseudo equilibrium :

We don't need information on the expression of f as long as we can estimate $\rho_{2,\infty}$ at given pressure

In the latest developments, not yet published, it has been demonstrated that the same conclusions are obtained for the relation between non equilibrium and equilibrium properties, even after removing the hypothesis that the glassy mixture follows a Voigt type of rheological response

Pseudo equilibrium solubility calculation

Pseudo equilibrium condition, solved with respect to ω_1

Pseudo equilibrium solubility calculation

CO2	AF1600		
44	1E+30	molar mass	(g/mol)
300	575	charac. temperature	(K)
630	280	charac. pressure	(MPa)
1.515	2.16	charac. density	(K)

Solubility calculation without dilation data

Typical trend of the volume dilation with pressure is linear:

(After Jordan and Koros, 1990)

Solubility calculation without dilation data

In the <u>absence of dilation data</u> NELF can be used as a correlation tool for the entire solubility isotherm based on the solubility at <u>one</u> <u>single pressure</u> through the use of the swelling factor k

NET-GP general procedure

⇒ Select an appropriate thermodynamic equilibrium model.

⇒ find the pure component parameters for

 •penetrant: use PVT and/or vapor pressure data
 •polymer: use PVT data above T_g
 ⇒the glassy polymer density: must be known
 ⇒ Calculate penetrant chemical potential and solubility isotherm

$$\frac{f_1^g}{RT} = c_1 \exp\left(\frac{\mu_{1,ne}^{res}}{RT}\right)$$

NET-GP main references

Macromolecules 1996, 29, 7885.
 Chem. Eng. Sci. 1998, 53, 3435-3447.
 J. Membrane Sci. 1998, 147, 73.
 ACS Symposium Series 1999, 733, 179-193.
 Ind. Eng. Chem. Res. 2001, 40, 3027-3037.
 Desalination, v.144, p.73 (2002).
 ACS Symposium series, v.876, p.74 (2004).
 ACS Symposium series, v.876, p.55, (2004)

Equilibrium models: Lattice Fluid (LF), Statistical Associating Fluid Theory (SAFT), Perturbed Hard Sphere Chain (PHSC)

Basics of LF model

Statistical evaluation of the number of configurations of the lattice with a mean field approximation

Estimate of the energetic interactions between adjacent sites

$$G = R T^* \left(\sum_{i=1}^N r_i n_i \right) \cdot \left\{ -\tilde{\rho} + \frac{\tilde{p}}{\tilde{\rho}} + \frac{\tilde{T}}{\tilde{\rho}} \left[\left(1 - \tilde{\rho} \right) \ln \left(1 - \tilde{\rho} \right) + \tilde{\rho} \sum_{i=1}^N \frac{\phi_i}{r_i} \ln \left(\phi_i \tilde{\rho} \right) \right] \right\}$$
$$\tilde{p} = p / p^* \qquad \tilde{T} = T / T^* \qquad \tilde{\rho} = \rho / \rho^*$$

 r_i = number of sites per molecule ε^* = Potential energy well depth v^* = site volume $p^{*} = \varepsilon^{*} / v^{*} Characteristic pressure$ $T^{*} = \varepsilon^{*} / k Characteristic temperature$ $\rho_{i}^{*} = \frac{M_{i}}{r_{i}v_{i}^{*}} Characteristic density$

LF Equation of state

Characteristic parameters are related to $T^* \leftrightarrow \mathsf{INTRAmolecular}$ interactions

 $p^* \leftrightarrow \text{INTERmolecular interactions}$ (solubility parameter, compressibility)

 $\rho^* \leftrightarrow crystalline density$

$$\left[\frac{\partial \tilde{G}}{\partial \tilde{v}}\right]_{\tilde{T},\tilde{p}} = 0 \qquad \Longrightarrow \qquad \left[\rho = \rho^* \left\{1 - \exp\left[-\left(\frac{\rho}{\rho^*}\right)^2 \frac{T^*}{T} - \frac{T^* p}{TP^*} - \left(\frac{\rho}{\rho^*} - \frac{RT^*}{MP^*}\rho\right)\right]\right\} \quad \mathbf{LF}$$
EOS

Formally identical for pure substances and for mixtures

The characteristic parameters can be found in the literature, or estimated by best fitting of:

- LV equilibrium data or PVT data, for gases and vapors
- PVT data above T_G , for **polymers**

Estimation of LF characteristic parameters for pure gases and vapors

CO₂ specific volume vs T at various P

CO₂:

P*	(MPa)	630
rho*	(kg/l)	1.515
T*	(K)	300

n-C₆:

a) 28	(MPa)	P*
) 0.76	(kg/l)	rho*
49	(K)	T*

Estimation of LF characteristic parameters for pure polymers

PVT data above T_G

Some polymers (PTMSP) degrade at $T < T_G$: it is not possible to estimate the LF EOS parameters from the data above T_G ! They can be estimated indirectly via solubility data or with molecular simulation tools

LF model for mixtures: mixing rules

$$\rho^{*} \left[\frac{1}{\rho^{*}} = \frac{\omega_{1}}{\rho_{1}^{*}} + \frac{\omega_{2}}{\rho_{2}^{*}} \right] \mathbf{T}^{*} \left[T^{*} = P^{*} / \left[\rho^{*} \left(\frac{P_{1}^{*} \omega_{1}}{T_{1}^{*} \rho_{1}^{*}} + \frac{P_{2}^{*} \omega_{2}}{\rho_{2}^{*} T_{2}^{*}} \right) \right] \mathbf{P}^{*} \left[P^{*} = \rho^{*} \left(\frac{P_{1}^{*} \omega_{1}}{\rho_{1}^{*}} + \frac{P_{2}^{*} \omega_{2}}{\rho_{2}^{*} \rho_{1}^{*}} + \frac{\omega_{1} \omega_{2}}{\rho_{2}^{*} \rho_{1}^{*}} \rho^{*} \left(P_{1}^{*} + P_{2}^{*} - 2P_{12}^{*} \right) \right) \right] \mathbf{P}^{*} \left[\Delta \mathbf{P}_{12}^{*} = P_{11}^{*} + P_{22}^{*} - 2\Psi_{12} \sqrt{\mathbf{P}_{1}^{*} \mathbf{P}_{2}^{*}} \right] \mathbf{P}^{*} \mathbf{P}^{*} \left[\mathbf{P}_{12}^{*} = P_{12}^{*} \sqrt{\mathbf{P}_{1}^{*} \mathbf{P}_{2}^{*}} \right] \mathbf{P}^{*} \mathbf{P}^{*} \left[\mathbf{P}_{12}^{*} = \Psi_{12} \sqrt{\mathbf{P}_{1}^{*} \mathbf{P}_{2}^{*}} \right] \mathbf{P}^{*} \mathbf{P}^{*}$$

1 binary parameter $\Psi_{12} \leftrightarrow gas - polymer interactions$ To be adjusted on **experimental miscibility data**

Some observations about the mixing rules

It has been observed that the mixing rule, with $\Psi_{12}=1$, is not always appropriate to describe the behavior of mixtures of substances with different functional groups, in particular those involving **fluorocarbons and hydrocarbons**

LF EOS for gas sorption in rubbery polymers

Basics of SAFT model

Molecules are chains of tangent hard spheres with a fixed mass and a temperature-dependent volume, whose residual Helmholtz free energy can be calculated in an additive way:

$$a^{res} = a(T,V,n) - a^{id}(T,V,n)$$

$$a^{res} = a_{hs} + a_{disp.} + a_{chain} + a_{assoc.}$$
²⁸

Basics of SAFT model

$$a^{\text{res}} = (a)_{\text{hs}} + (a)_{\text{disp}} + (a)_{\text{chain}} + (a)_{\text{assoc}}$$

hard sphere $(a)_{hs}$ Carnahan & Starling (1969)dispersion $(a)_{disp}$ power series fit of square well fluid by Adler (1972)chain $(a)_{chain}$ Chapman *et al.* (1990)association $(a)_{assoc}$ Chapman *et al.* (1990)

Pure component parameters:

- ⇒ segment diameter σ (Å) ⇒ segment mass m' (g/m
- \Rightarrow well depth

σ (A) m' (g/mol) ε/k (K)

Binary parameter k_{ij} $\epsilon_{ij} = (\epsilon_{ii} \epsilon_{jj})^{1/2} (1 - k_{ij})$ 1^{st} order approximation $k_{ij} = 0$

Basics of PHSC model

In the PHSC EOS the residual Helmholtz free energy is composed of two terms :

A^{res} = A_{ref} + A_{pert} A^{HSC} : It accounts for the repulsive forces and for the chain connectivity [A_{hs.} + A_{chain}]

There are no explicit terms for the interactions of associating fluids

Different versions of SAFT and PHSC EOS

➢ Within a same theory, there are several versions, differing for the expression used for the terms composing the residual Helmholtz free energy

We adopted two versions of each model, so far:

 SAFT (ot SAFT-HR), by Huang and Radosz (1990) (A_{disp} by Chen-Kreglewsky)
 (PC) SAFT by Gross and Sadowsky (2001) (A_{disp} from Barker and Henderson perturbation theory)

 PHSC S simplified (Song et al., 1996) (Van der Waals attractive term)
 PHSC SW Square well (Hino, Prausnitz, 1997) (perturbation term based on Barker-Henderson theory)

Characteristic parameters of HSC models

Both models have three characteristic parameters [σ, r, u_o]:

Mixing rules:

The only adjustable parameter appears in the mixing rules for the dispersion term:

$$u_{ij}^{0} = \left(1 - k_{ij}\right) \sqrt{u_{ii}^{0} \cdot u_{jj}^{0}}$$
³²

Determination of characteristic parameters

Polycarbonate PVT data and PHSC-S EOS Polycarbonate PVT data and SAFT EOS

	σ (Å)	MMI/r (g/mol)	u_o//k (K)
PHSC-S	3.707	25.74	393.0
SAFT-HR	3.043	25.00	371.0

NET-GP approach: performance, results and comparison with experimental data

NELF predictions (with dilation data)

Effect of history

(data from Fleming and Koros, 1990)

35

NELF predictions with constant density approx $\rho_2 \approx \rho_2^0$

Non swelling penetrants

Swelling penetrants, low pressure

NELF correlations (no dilation data)

The swelling coefficient, k, estimated in this way, is close to the measured value:

k is a realistic measure of swelling and not merely an empirical adjustable parameter
This procedure offers a reliable estimate of the dilation isotherm when one sorption datum is available.

NELF: solubility at infinite dilution vs T_c

$$ln(S_0) = ln\left(\frac{T_{STP}}{P_{STP}T}\right) + r_1^0 \left\{ \left[1 + \left(\frac{v_1^*}{v_2^*} - 1\right)\frac{\rho_2^*}{\rho_2^0}\right] ln\left(1 - \frac{\rho_2^0}{\rho_2^*}\right) + \left(\frac{v_1^*}{v_2^*} - 1\right) + \frac{\rho_2^0}{\rho_2^*}\frac{T_1^*}{T}\frac{2}{P_1^*}\Psi\sqrt{P_1^*P_2^*}\right\}$$

$$S_0 = \lim_{p \to 0} \left(\frac{C}{p} \right)$$

$$ln(S_0) = a + b \cdot T_C$$

 (\mathbf{C})

NELF: solubility at infinite dilution vs M_W

In the low pressure range, one also has:

$$\left[\frac{d}{dr_1^{\circ}}\ln\left[\frac{c_1}{p/p_{vap}}\right] = \ln(v_f) + (1-v_f)\frac{p_2^{*}v_1^{*}}{RT}\right]$$

 r_1^{0} =measure of the chain length v_f = polymer fract. free volume

1) If v_f is small, the r. h. s. of the equation is always < 0: solubility decreases with increasing M_W .

2) The critical fractional free volume, v_{fc} , at which the r.h.s.vanishes can exist, depending upon p_2^*

3) For small p_2^* , $\mathbf{v}_{fc} \rightarrow \mathbf{1} \Rightarrow$ even for high v_f solubility decreases with increasing M_W

NELF prediction of the correlation between solubility and M_w

	р ₂ * (Мра)	V _{fc}	V _f			
PTMSP	500-600	0.2	0.25-0.30			
PTBA 50	500-600	0.2	0.15			
AF2400	250-300	→1	0.13-0.18			

Sigmoidal isotherms: Alcohols in PTMSP

For PTMSP, ρ^* is evaluated from experimental data, T* and P* adjusted on the solubility isotherms of alkanes at various temperatures in PTMSP 41

(data of solubility and pure polymer density from Nakanishi et al.)

NELF prediction of mixed gas sorption

PMMA-C₂H₄-CO₂ mixture at 35°C 4.5 12 Exp. data Exp. data NE-LF - NE-LF 10 C_4H_2 content (cm³STP/cm³) 4.0 CO₂ content (cm³STP/cm³) 3.5 3.0 2.5 2 2.0 0.0 1.0 2.0 3.0 4.0 5.0 0 2 3 5 CO₂ partial pressure (atm) CO₂ partial pressure (atm)

 C_2H_4 partial pressure = constant = 2.06 ± 0.08 atm.

✓ Default binary parameters for the polymer-penetrant pairs (k₁₂=k₁₃=0.0)
 ✓ Swelling neglected;

✓ VL equilibrium data used for the evaluation of the C_2H_4 - CO_2k_{23} ($k_{23} = 0.024$).

NE-LF prediction of pure gas sorption in blends

The blend is treated like a pseudo component, mixture of the two homopolymers, and the mixture characteristic parameters calculated accordingly from the pure homopolymers parameters. In particular, for the gas-blend binary parameter:

$$\Delta P_{B3}^{*} = \frac{\phi_{1}}{\phi_{1} + \phi_{2}} \Delta P_{13}^{*} + \frac{\phi_{2}}{\phi_{1} + \phi_{2}} \Delta P_{23}^{*} - \frac{\phi_{1} \cdot \phi_{2}}{\phi_{1} + \phi_{2}} \Delta P_{12}^{*}$$

adjusted on the the blend volumetric data or Y=1

adjusted on the solubility of gas in the homopolymers

The swelling coefficient, k_B of the gas in the blend is calculated as the mass average of the swelling parameters of the gas in the two homopolymers.

NE-LF prediction of pure gas sorption in blends

Y.Maeda, D.R.Paul, *Polymer*, 26, 1985, 2055-2063.

		NELF						
PS				PPO			CH4	
T*	(K)	750	T*	(K)	3.043	mol weig	ght	16.01
P*	(MPa)	360	P*	(MPa)	25	T*	(K)	215
rho*	(g/cm3)	1.099	rho*	(g/cm3)	371	P*	(MPa)	250
						rho*	(g/cm3)	0.5
Kcalc	1/Mpa	0	Kcalc	1/Mpa	0			
bynary p	arameter	PS-CH4					0.9517	
bynary p	arameter	PPO-CH4					1.0931	

NE-SAFT prediction of infinite dilution solubility across T_G

NE-EOS prediction of sorption

I	Binary Para	meters k_{ij}	
System	SAFT -HR	PHSC- SW	$\mathbf{SL} \\ (1- \Psi_{ij})$
PEMA-N ₂	0.020	-0.018	0.030
PSf-CH ₄	-0.015	-0.085	-0.030
PPO-CH ₄	0.0	-0.085	-0.060

Brief Tutorial

Open file: **model_file_NE** *and save it with the most appropriate name.*

Check if the pure component parameters for your system, relative to the model that you are going to use (SL, SAFT, SAFT(PC), PHSC or PHSC (SW)) are in the database. The characteristic parameter for each EOS are put in the homonymous worksheet

Check if in the worksheet named **IG** there are the molecular weight for the penetrant and the polymer. For the polymer, put $Mw=10^{30}$ g/mol

If you found the characteristic parameters and want to perform an equilibrium Solubility calculation, open worksheet named EQ_SOL

EQ_SOL: red cells are to be modified by the user Certain cells are protected: you have to remove the protection before modifying them

A	В			E	F	G	Н			J	n	L
GOOD	<	last calculati	on result									
Ca	lculate	kij + kswl CTRL + o	kij CTRL+k	kswl CTBL + w							Non eq	uilibrium
								0.25				
								0.55				
model		5	SL						•	experin	nental data	
T (K)		298.15						0.3		-NF-FO	S predictio	h
		solvent	polymer									
component	S	ET-2	PTMSP-2					0.25				/
mol weight		47.069	1E+30	molar mass	(g/mol)			0.25	7			
element vo	lume	0	515	charac. temperature	(K)							
element ma	ass	0	440	charac, pressure	(MPa)		- 10	a 0.2	-			
interaction	energy	0	1.25	charac. density	(K)		2	Ď				•
5		0	0				2	0.15				•
5								0.15			1.	
<u></u>											/ •	
3								0.1	-		•	
binary para	ameter			0.00E+00								
)								0.05	_			
								0.00		∕•		
2										•		
Pmax (MPa	a)	0.0052916						0	•	1	1	1
÷				Number of:					0	0.001	0.002	2 0.00
dry polyme	er density	0.74	kg/m ³	Experimental points	10							
swelling co	efficient	0.00E+00	MPa ⁻¹	Points to evaluate	52							F (IVIF
7		R										
Experime	ental data	Accuracy		Prediction								
P (MPa)	W (g/gpol)	``	P (MPa)	W (g/gpol)	*****							
		``						D ₁	t the	dry n	alvmar	donsity
0	0	1	0.0001018	0.004061563				1 1	i ine	ury p	l	uchsuy
0.0003	0.00362	1	0.0002035	0.008443912			-	- the	e gla	ssy po	lymer a	t that
0.0006	0.01087	1	0.0003053	0.013200083				ter	nner	ature	The pr	dicted
0.00098	0.04107	1	0.000407	0.018396735				101	1 1 .1		inc pro	···
0.00136	0.09422	1	0.0005088	0.024118704				SO	lubili	ty is v	ery sen	sitive to
0.002	0.12563	1	0.0006106	0.030475434				va	lue			
	CRT / SAFT /	SAFT(PC) /		SW) /SL / solvent / polym	er / EQ-SQL							
						6.01						
				Put the s	welling a	coefficie	ent					

NE_SOL: same procedure as before plus swelling parameter and dry polymer density

 ✓ If there are no characteristic parameter for the EOS of interest for the penetrant, use worksheet "solvent" with experimental data of vapor pressure and saturated liquid density. The data for some penetrants are in the file solvent_data_SL.xls file, together with the calculated values with the SL EOS

 ✓ If there are no characteristic parameter for the EOS of interest for the polymer, use worksheet "polymer" with experimental data of PVT data above T_G. The data for some polymers are in the file polymer_data_SL.xls file, together with the calculated values with the SL EOS

Exp. Vapor pressure at that T

Exp. Saturated liquid density at that T

I	· ~ ·	~		_															
	A	В	C	D	E	F	G	Н	J	К	L	М	N		Р	0	B	S	
1	GOOD	<	last calcula	ation result	_														
2																			-
2	Calor	data	Batrieve	Gave parame															<u> </u>
3	CTRI		Decrete	CTBL+r							Volum	atric pro	nortios	- is ob a		ee (n in	MBa)		
4			Harame								volum	etric pro	perces	-15004	inc curv	es (pin	ivira) -		_
5										0.670 -									
6																			
7	mma errori		1.40E-01																
8	diff pende	enze	1.15E-02	distanza	1.66E-05	1.15E-02													
9	nendenza	sper	4 97E-02	distanza sper	0 104770654					0.650 -									
10	polumer		AE2400	arotar iza opor	0.104110004												I		
10	porymen		AI 2400	DCCAFT															_ -
10	model		Z	PL-SAFT						6						×		• 10	
12										₹ 0.630 -								 20	
13	n_temp		10							=				• • •			~	- 20	
14	n_press		5							e l				• •			•	• 30	
15	parameter	s	current	database						5			• -		-	- · ·		4 0	
16	mol weigh	nt	1E+30	1E+30	molar mass	(a/mol)				로 따라네.						· ·	_	- +0	
17	element v	olume	3,316	3,316	sphere diameter	(A)				5					-		•	• 50	
18	element	1966	54.5	54.5	sphere mass	(kalkme)				je l			• •	× .	~	< • •		•	- T F
19	interaction	abergu	202.000	202.0	obatao epergu	(K)				ยักรรกไ									
10	in iteraction	renergy	203.000	203.0	criarac, energy	UNJ				ر ^د ق							•	-	
20			U	U						.				· •	-	· •	- I		
21						-							-		•	-	·		
22					PHSC SW	PHSC				0.570 -									
23			61.45959	61.45958987	3.815	3.816	2.993											•	
24					85.88	53.48	46.68												
25					219	241.5	189.9												
26					1.455		1.455			0.550 +					1				
27	vol Exp	data								530)	550	570	5	590	610	630)	
20	(LJKa)												Tam	norskuro (רא				
28	(L/kg)	T (K)											Tem	perature (к)				
27 28 29	(L/kg)	т (К)	10		20	40	E0						Tem	perature (К)				
28 29 30	(L/kg) p (MPa)	Т (К)	10	20	30	40	50						Tem	perature (к)				
28 29 30 31	(L/kg) p(MPa)	T (K)	10 0.6130	20 0.5964	30	40	50						Tem	perature (к)				
28 29 30 31 32	(L/kg) p (MPa)	T (K) 563 570	10 0.6130 0.6161	20 0.5964 0.5983	30	40	50						Tem	perature (к)				
28 29 30 31 32 33	(L/kg) p (MPa)	T (K) 563 570 576	10 0.6130 0.6161 0.6190	20 0.5964 0.5983 0.6003	30	40	50						Tem	perature (к)				
28 29 30 31 32 33 34	(L/kg) p (MPa)	T (K) 563 570 576 582	10 0.6130 0.6161 0.6190 0.6224	20 0.5964 0.5983 0.6003 0.6003	30	40	50						Tem	perature (к)				
28 29 30 31 32 33 34 35	(L/kg) p (MPa)	T (K) 563 570 576 582 587	10 0.6130 0.6161 0.6190 0.6224 0.6253	20 0.5964 0.5983 0.6003 0.6027 0.6046	30 0.5899 0.5912	40	50							perature (K)				
27 28 29 30 31 32 33 34 35 36	(L/kg) p (MPa)	T (K) 563 570 576 582 582 587 594	10 0.6130 0.6161 0.6190 0.6224 0.6253 0.6290	20 0.5964 0.5983 0.6003 0.6007 0.6046 0.6072	0.5899 0.5912 0.5932	40	50						Tem	perature (К)				
27 28 29 30 31 32 33 34 35 36 37	(L/kg) p(MPa)	T (K) 563 570 576 582 587 594 600	10 0.6130 0.6161 0.6190 0.6224 0.6253 0.6290 0.6325	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098	30 0.5899 0.5912 0.5932 0.5932	40 0.5819 0.5832 0.5845	0.5763						Tem	perature (K)				
27 28 29 30 31 32 33 34 35 36 37 38	(L/kg) p (MPa)	T (K) 563 570 576 582 587 594 600 606	10 0.6130 0.6161 0.6190 0.6224 0.6253 0.6290 0.6325 0.6360	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6124	0.5899 0.5912 0.5932 0.5951 0.5951	40 0.5819 0.5832 0.5845 0.5859	0.5763						Tem	perature (K)				
27 28 29 30 31 32 33 34 35 36 37 38 39	(L/kg) p(MPa)	T (K) 563 570 576 582 587 594 600 606 613	10 0.6130 0.6161 0.6224 0.6253 0.6290 0.6325 0.6325 0.6360 0.6405	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6125	30 0.5899 0.5912 0.5932 0.5951 0.5951 0.5971	40 0.5819 0.5832 0.5845 0.5859 0.5857	50 50 0.5763 0.5773 0.5773						Tem		K)				
27 28 29 30 31 32 33 34 35 36 37 38 39	(L/kg) p(MPa)	T (K) 563 570 576 582 587 594 600 606 613 620	10 0.6130 0.6161 0.6224 0.6253 0.6290 0.6325 0.6360 0.6405 0.6443	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6124 0.6155 0.6197	30 0.5899 0.5912 0.5932 0.5951 0.5951 0.5971 0.5994 0.6193	40 0.5819 0.5832 0.5845 0.5859 0.5877 0.5897	0.5763 0.5773 0.5780						Tem		K)				
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41	(L/kg) p(MPa)	T (K) 563 570 576 582 587 594 600 606 613 620	10 0.6130 0.6161 0.6224 0.6253 0.6290 0.6325 0.6360 0.6405 0.6443	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6124 0.6155 0.6187	30 0.5899 0.5912 0.5932 0.5951 0.5971 0.5971 0.5994 0.6019	40 0.5819 0.5832 0.5845 0.5859 0.5877 0.5897	0.5763 0.5773 0.5786 0.5801						Tem		K)				
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41		T (K) 563 570 576 582 587 594 600 606 613 620	10 0.6130 0.6161 0.6190 0.6224 0.6253 0.6290 0.6325 0.6360 0.6405 0.6443	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6124 0.6155 0.6187	30 0.5899 0.5912 0.5932 0.5951 0.5971 0.5994 0.6019	40 0.5819 0.5832 0.5845 0.5859 0.5859 0.5877 0.5897	0.5763 0.5773 0.5786 0.5801						Tem,		K)				
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42	vol. Calc	T (K) 563 570 576 582 587 594 600 606 613 620 . Data	10 0.6130 0.6161 0.6190 0.6224 0.6253 0.6290 0.6325 0.6360 0.6443	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6124 0.6155 0.6187	30 0.5899 0.5912 0.5932 0.5951 0.5951 0.5971 0.5994 0.6019	40 0.5819 0.5832 0.5845 0.5859 0.5857 0.5897	0.5763 0.5773 0.5773 0.5801						Tem		K)				
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 41 42 43	(L/kg)	T (K) 563 570 576 582 587 594 600 606 613 620 . Data	10 0.6130 0.6161 0.6224 0.6253 0.6250 0.6325 0.6360 0.6405 0.6443	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6124 0.6155 0.6187	30 0.5899 0.5912 0.5932 0.5951 0.5951 0.5971 0.5994 0.6019	40 0.5819 0.5832 0.5845 0.5859 0.5877 0.5897	0.5763 0.5773 0.5786 0.5801						Tem		K)				
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 41 42 43 44	(L/kg) p (MPa) vol. Calc (L/kg)	T (K) 563 570 576 582 587 594 600 606 613 620 2. Data T (K)	10 0.6130 0.6161 0.6224 0.6253 0.6290 0.6325 0.6360 0.6443	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6124 0.6155 0.6187	30 0.5899 0.5912 0.5932 0.5951 0.5971 0.5994 0.6019	40 0.5819 0.5832 0.5845 0.5859 0.5897	50 0.5763 0.5773 0.5780 0.5801						Tem		K)				
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 41 42 43 44 45	p (MPa) p (MPa) vol. Calc (Likg) p (MPa)	T (K) 563 570 576 582 584 600 606 613 620 . Data T (K)	10 0.6130 0.6161 0.6224 0.6253 0.6290 0.6325 0.6360 0.6405 0.6443	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6124 0.6155 0.6187	30 0.5899 0.5912 0.5932 0.5951 0.5971 0.5994 0.6019 30	40 0.5819 0.5832 0.5845 0.5859 0.5877 0.5897	0.5763 0.5773 0.5786 0.5801						Tem	perature (K)				
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	(L/kg) p (MPa) vol. Calc (L/kg) p (MPa)	T (K) 563 570 576 582 587 594 600 606 613 620 2. Data T (K) 563	10 0.6130 0.6161 0.6224 0.6253 0.6253 0.6325 0.6325 0.6360 0.6405 0.6443	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6124 0.6155 0.6187 20 20 0.591753713	30 0.5899 0.5912 0.5932 0.5951 0.5971 0.5994 0.6019 30 0.578965786	40 0.5819 0.5832 0.5845 0.5859 0.5877 0.5897 	0.5763 0.5773 0.5786 0.5801	- 0					Tem	Derature (K)				
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	vol. Calc (L/kg) vol. Calc	T (K) 563 570 576 582 587 594 600 606 613 620 . Data T (K) 563 570	10 0.6130 0.6161 0.6224 0.6253 0.6325 0.6360 0.6443 0.6443 0.6443	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6046 0.6155 0.6124 0.6155 0.6187 20 0.591753713 0.595105472	30 0.5899 0.5912 0.5932 0.5951 0.5994 0.6019 0.6019 0.578965786 0.581918625	40 0.5819 0.5832 0.5845 0.5859 0.5897 0.5897 0.5897 40 0.56821 0.57087	50 0.5763 0.5773 0.5786 0.5801 0.5801 0.56833 0.56136	- - 0 0					Tem	perature (K)				
27 28 29 30 31 32 33 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	p (MPa) vol. Calc (L/kg) p (MPa)	T (K) 563 570 576 582 587 594 600 606 613 620 c. Data T (K) 563 570 576	10 0.6130 0.6161 0.6224 0.6253 0.6325 0.6325 0.6360 0.6405 0.6443 0.6443 0.6443 0.64154	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6124 0.6155 0.6187 20 0.591753713 0.595105472 0.598424214	30 0.5899 0.5912 0.5932 0.5951 0.5934 0.5994 0.6019 0.578965786 0.581918625 0.584833816	40 0.5819 0.5832 0.5845 0.5859 0.5877 0.5897 	0.5763 0.5773 0.5786 0.5801 0.5893 0.56136 0.55853						Tem	perature (K)				
27 28 29 30 31 32 33 34 35 36 37 38 36 37 38 39 40 41 41 42 43 44 44 5 46 47 48 48	(L/kg) p (MPa) vol. Calc (L/kg) p (MPa)	T (K) 563 570 576 582 587 594 600 606 613 620 2. Data T (K) 563 570 576 576	10 0.6130 0.6161 0.6224 0.6253 0.6253 0.6325 0.6325 0.6360 0.6405 0.6443 0.6443 0.6443 0.64537 0.61146 0.61537	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6124 0.6155 0.6187 20 0.591753713 0.595105472 0.598424214 0.60275256	30 0.5899 0.5912 0.5932 0.5951 0.5971 0.5994 0.6019 0.5019 0.501918625 0.581918625 0.5841913616	40 0.5819 0.5832 0.5845 0.5859 0.5877 0.5897 0.5897 40 0.56821 0.57087 0.57087 0.57349 0.57349 0.57349	0.5763 0.5773 0.5773 0.5786 0.5801 0.55893 0.56136 0.56375 0.56375 0.56375						Tem	perature (K)				
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 41 42 43 44 45 46 47 48 49 50	vol. Calc (L/kg) vol. Calc (L/kg)	T (K) 563 570 576 582 587 594 600 606 613 620 2. Data T (K) 563 570 576 582 582 582	10 0.6130 0.6161 0.6224 0.6253 0.6325 0.6360 0.6443 0.6443 0.60753 0.6146 0.61537 0.61981 0.62312	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6046 0.6124 0.6155 0.6187 20 0.591753713 0.595105472 0.598424214 0.602175266 0.602175266	30 0.5899 0.5912 0.5932 0.5951 0.5991 0.5994 0.6019 0.578965786 0.581918625 0.584833616 0.588119137 0.59859315	40 0.5819 0.5832 0.5845 0.5859 0.5897 0.5897 0.5897 0.56821 0.56821 0.57087 0.57349 0.57643 0.57264	50 0.5763 0.5773 0.5786 0.5801 0.5803 0.55893 0.56136 0.56375 0.56643 0.56643						Tem	perature (K)				
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 41 42 43 44 44 45 46 47 48 49 55	vol. Calc (L/kg)	T (K) 563 570 576 582 587 594 600 606 613 620 Data T (K) 563 570 576 582 587 582	10 0.6130 0.6161 0.6224 0.6253 0.6290 0.6325 0.6360 0.6405 0.6443 0.6443 0.6443 0.6443 0.64146 0.61537 0.61581 0.62317 0.62317	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6125 0.6155 0.6187 20 0.591753713 0.595105472 0.598424214 0.602175266 0.604996295	30 0.5899 0.5912 0.5932 0.5951 0.5951 0.5994 0.6019 0.578965786 0.581918625 0.584833616 0.584833616 0.584833616 0.588119137 0.590583115	40 0.5819 0.5832 0.5859 0.5859 0.5897 0.5897 0.5897 40 0.56821 0.57087 0.57087 0.57349 0.57643 0.57684	0.5763 0.5773 0.5786 0.5893 0.56136 0.56336 0.563643 0.56643 0.56244						Tem	perature (K)				
27 28 30 31 32 33 34 35 36 37 38 39 40 41 41 42 43 44 45 46 47 48 49 50 51	vol. Calc (L/kg) p (MPa)	T (K) 563 570 576 582 587 594 600 606 613 620 2. Data T (K) 563 570 576 582 587 594 587 587 587	10 0.6130 0.6161 0.6224 0.6253 0.6325 0.6325 0.63405 0.6443 0.6443 0.6443 0.6443 0.6443 0.6443 0.6443 0.6443 0.61537 0.6184 0.62317 0.62276 0.62276	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6124 0.6155 0.6187 0.591753713 0.595105472 0.598424214 0.602175266 0.6024956295 0.608841349	30 0.5899 0.5912 0.5932 0.5951 0.5951 0.5994 0.6019 0.6019 0.578965786 0.58198625 0.584833616 0.584833616 0.584833616 0.590583115 0.590583115	40 0.5819 0.5832 0.5845 0.5859 0.5877 0.5897 0.5897 0.57643 0.57643 0.57749 0.57749 0.57784 0.577864	0.5763 0.5773 0.5786 0.5801 0.55893 0.5636 0.56375 0.56843 0.56634 0.56684						Tem	perature (K)				
27 28 29 30 31 32 33 34 35 36 37 37 38 39 40 41 41 42 43 34 44 45 45 47 47 48 49 50 51 52	vol. Calc (L/kg) vol. Calc (L/kg) p (MPa)	T (K) 563 570 576 582 587 594 600 606 613 620 2. Data T (K) 563 570 576 582 587 594 600 576 583 570 576 582 587 594 600 606 613 620 577 594 600 606 613 620 577 594 600 606 615 615 620 587 594 600 606 615 615 620 587 594 600 606 615 615 620 587 594 600 606 615 615 620 587 594 600 606 615 615 620 587 594 600 606 615 615 615 70 595 70 595 70 595 595 595 705 595 615 705 615 705 705 705 705 705 705 705 70	10 0.6130 0.6161 0.6224 0.6253 0.6325 0.6360 0.6443 0.6443 0.60753 0.61443 0.60753 0.61146 0.61537 0.61981 0.62317 0.62319	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6046 0.6124 0.6155 0.6187 20 0.591753713 0.595105472 0.598424214 0.602175266 0.60496295 0.608841349 0.612359277	30 0.5899 0.5912 0.5932 0.5932 0.5951 0.5994 0.6019 0.578965786 0.581918625 0.584833616 0.588119137 0.593933776 0.593933776	40 0.5819 0.5832 0.5845 0.5859 0.5859 0.5897 0.5897 0.5897 0.56821 0.57683 0.57643 0.57643 0.57863 0.578643 0.58163	50 0.5763 0.5773 0.5786 0.5801 0.5893 0.56893 0.563643 0.56643 0.56643 0.5716 0.5763	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					Tem	perature (K)				
27 28 29 30 31 32 33 34 35 36 37 33 34 35 36 37 37 38 39 40 41 41 42 43 44 45 46 47 48 9 50 51 52 53	vol. Calc (L/kg) vol. Calc (L/kg) p (MPa)	T (K) 563 570 576 582 587 594 600 606 613 620 Data T (K) 570 576 582 577 594 600 606	10 0.6130 0.6161 0.6224 0.6253 0.6325 0.6360 0.6405 0.6443 0.6443 0.6443 0.64537 0.61537 0.61581 0.62317 0.62377 0.631981 0.6362	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6155 0.6155 0.6187 20 0.591753713 0.595105472 0.598424214 0.602175266 0.604996295 0.608841349 0.612359277 0.615864363	30 0.5899 0.5912 0.5932 0.5951 0.5951 0.5994 0.5994 0.6019 30 0.578965786 0.581918625 0.584833616 0.584833616 0.588119137 0.590583115 0.593933776 0.593933776 0.593933776	40 0.5819 0.5832 0.5845 0.5859 0.5897 0.5897 0.5897 0.57087 0.57087 0.577864 0.57643 0.576643 0.57864 0.58163 0.58435 0.58706	0.5763 0.5773 0.5786 0.5801 0.55893 0.56136 0.556375 0.56643 0.56375 0.56643 0.55766						Tem	perature (K)				
27 288 29 30 31 32 33 34 35 36 37 38 35 37 38 39 40 41 41 42 43 37 44 45 51 51 52 53 54	vol. Calc (L/kg) p (MPa)	T (K) 563 570 576 582 587 594 600 606 613 620 T (K) 563 570 576 582 587 594 600 606 600 606 613 570 576 582 587 594 600 606 613 620 577 594 600 606 613 620 577 594 607 607 607 607 607 607 607 607	10 0.6130 0.6190 0.6224 0.6253 0.6325 0.6325 0.63405 0.6443 0.6443 0.6443 0.6443 0.6443 0.6443 0.61537 0.61146 0.61537 0.62176 0.63198 0.6322 0.64094	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6098 0.6124 0.6155 0.6187 0.591753713 0.595105472 0.598424214 0.602175266 0.604996295 0.60841349 0.612359277 0.612864363 0.619775318	30 0.5899 0.5912 0.5932 0.5951 0.5951 0.5951 0.5994 0.6019 0.6019 0.578965786 0.581918625 0.584833616 0.584833616 0.584831913 0.590583115 0.590583115 0.590583115 0.590583176	40 0.5819 0.5832 0.5845 0.5859 0.5877 0.5887 0.5887 0.5784 0.57087 0.57784 0.57784 0.57784 0.57784 0.57864 0.58163 0.58764 0.58163 0.58766 0.58906	0.5763 0.5773 0.5773 0.5786 0.5893 0.56893 0.5636 0.56635 0.56643 0.56643 0.56643 0.56643 0.56643 0.57636 0.57636 0.57636						Tem	perature (K)				
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 41 42 43 37 38 39 40 41 41 42 43 44 45 50 51 52 53 54 55	vol. Calc (L/kg) vol. Calc (L/kg) p (MPa)	T (K) 563 570 576 582 587 594 600 606 613 620 T (K) 563 570 576 582 587 594 600 606 613 570 594 600 606 613 570 576 582 587 594 600 606 613 570 576 617 576 617 576 617 576 617 576 617 576 617 576 617 576 617 576 617 576 617 576 617 576 617 576 617 576 617 576 617 576 617 617 617 617 617 617 617 6	10 0.6130 0.6161 0.6224 0.6253 0.6325 0.6360 0.6443 0.6443 0.60753 0.61146 0.61537 0.61981 0.62376 0.63198 0.6322 0.63198	20 0.5964 0.5983 0.6003 0.6027 0.6046 0.6072 0.6046 0.6124 0.6155 0.6187 0.6187 0.591753713 0.595105472 0.598424214 0.602175266 0.60496295 0.608841349 0.612859277 0.61586436277 0.61586439275318 0.615775318	30 0.5899 0.5912 0.5932 0.5932 0.5951 0.5994 0.6019 0.578965786 0.581918625 0.584833616 0.5881918625 0.584833616 0.58819137 0.590583115 0.593933776 0.593933776 0.596989602 0.600025781 0.603403717 , 0.606904091	40 0.5819 0.5832 0.5845 0.5859 0.5897 0.5897 0.5897 0.56821 0.57087 0.57843 0.57643 0.578643 0.58163 0.58163 0.58163 0.58163 0.58163 0.58163 0.58163 0.58164 0.58164 0.58164 0.58164 0.58164 0.58164 0.5819 0.5821 0.57349 0.57349 0.57843 0.58870 0.57349 0.57843 0.5819 0.5819 0.57349 0.57843 0.5819 0.5819 0.57349 0.57843 0.5819 0.5819 0.5819 0.57349 0.57843 0.5819 0.5819 0.5819 0.57349 0.57843 0.5819 0.5819 0.5819 0.57819 0.57819 0.57819 0.57819 0.59319 0.57819 0.57819 0.57819 0.59319 0.57819 0.57819 0.57819 0.59319 0.57819 0.59319 0.57819 0.59319 0.57819 0.59319 0.57819 0.59319 0.59319 0.57819 0.59319 0.57819 0.59319 0.57819 0.59319 0.57819	50 0.5763 0.5773 0.5786 0.5801 0.55893 0.55893 0.55893 0.55683 0.55683 0.55643 0.57116 0.57864 0.57116 0.57863 0.57688						Tem	perature (K)				

Dankeschön für die Aufmerksamkeit !³³

Study and modeling of the effect of stress on the diffusion of vapors in glassy polymers

Effect of relaxation processes on gas/vapor solubility in glassy polymers: volume swelling model (VS)

Swelling kinetics of polymeric elements induced by sorption processes Volume dilation modeled through simple Kelvin-Voigt model for bulk rheology:

$$\frac{1}{\rho_{pol}} \frac{\partial \rho_{pol}}{\partial t} = \frac{p^{EXT} - p^{EQ} \left(\Omega, \rho_{pol}\right)}{\eta}$$

Example of results from fitting analysis of apparent solubility data in sorption processes driven by volume relaxation phenomena: n-hexane in PS @ 40°C sorption process in microspheres ($d \approx 0.5 \mu m$) activity jump $0 \rightarrow 0.1$ exp. data from Enscore, Hopfenberg e Stannett, 1980

Fitting parameter = bulk viscosity

Mass transport model for gas sorption in glassy polymeric systems with both diffusion and relaxation resistances: case of differential sorption in small characteristic length samples

$$\frac{\partial \rho_{sol}}{\partial t} = \underline{\nabla} \cdot \underline{J}$$
$$\underline{J} = -\mathcal{D} \rho_{sol} \underline{\nabla} \mu$$
$$\frac{\partial \rho_{pol}}{\partial t} = F$$

Rate-Type (RT) models for diffusion in polymers

$$\frac{\partial \rho_{sol}}{\partial t} = \underline{\nabla} \cdot \underline{J}$$

$$\tau \frac{\partial \underline{J}}{\partial t} + \underline{J} + D \rho_{sol} \underline{\nabla} \mu = 0$$

$$\frac{\partial \rho_{pol}}{\partial t} = F$$

hyperbolic scheme for mass transport, accounting for a both a relaxation time τ in flux development and a relaxation phenomena in volume swelling of the polymeric element

<u>Thermodynamic Analysis for the development</u> of shock concentration waves in the system

Results from the application

of 2nd law:

Necessary condition for the formation of shock concentration waves is that:

$$\frac{\partial^2 \mu}{\partial \rho_{sol}^2} > 0$$

at least in a concentration range

Example of simulation results for RT sorption model: case of negligible volume swelling

Sorption kinetics for the case of ethanol-PMMA system at 30°C $\rho_{pol} = 1.10 \text{ g/cm}^3 \text{ e diffusivity}$ exponentially increasing function of concentration:

Effect of external solute fugacity

Examples of concentration profiles from simulation of sorption process for ethanol in PMMA (De = 30)